
Invary On-Premise Quick Start Guide
The Invary Runtime Integrity Platform measures and appraises the integrity of your operating
systems in real time, finding hidden and zero day malware on your systems that are invisible to
other threat detection solutions.

This guide provides a step-by-step set of instructions to quickly get started with Invary’s
on-premise solution for testing and evaluation. Full documentation is included with Invary’s
packages.

Step 1: Binary Overview
You will be installing the following Invary binaries:

1. Invary Sensor, which measures a virtual or physical machine to be appraised for its
Runtime Integrity.

a. Packaged as invary-sensor.tar.gz
2. Invary Appraiser, which appraises measurements provided by an Invary Sensor.

a. Packaged as invary-appraiser.tar.gz
3. Invary Baseline Library, a set of files that are the baselines expected of an OS.

a. Packaged as invary-baselines.tar.gz
4. Optional: Invary Baseliner, a binary capable of baselining an OS that has a custom

kernel.
a. Packaged as invary-baseliner.tar.gz

5. Optional: Sample Ansible Scripts
a. Invary provides example Ansible scripts that automate this quick start guide.

Step 2: OS Support and Baseline Setup

Baseline once, measure anywhere
Invary Baselines are binary models of expected behavior of an OS, used by the Invary
Appraiser to validate the Runtime Integrity of your running systems. A single Baseline is scoped
to a distribution & kernel version, and can appraise any machine running that distro+kernel pair.

©2024 Invary, Inc. All rights reserved. 1

OS Support
Invary supports the following distributions out of the box: Alma Linux, AWSLinux, CentOS,
Debian, Photon, Redhawk, RedHat, Rocky, and Ubuntu, with any kernel version that supports
eBPF.

Steps to deploy baselines:
1. If you are using a COTS distribution:

a. Extract the baselines to /var/opt/invary-baselines
b. Note you do not need to persist baselines for OSes you do not use.

2. If you use a custom kernel:
a. Boot a virtual or physical machine with your custom kernel and modules.
b. Ensure this is a trusted machine with no modifications other than your intended

kernel updates and kernel modules used in production.
c. Place the Invary Baseliner binary on the machine.
d. Run: sudo ./invary-baseliner --output $(uname -r).baseline

i. The resulting file should look something like this:
6.1.0-9-amd64.baseline

ii. Place the resulting file in the appropriate OS folder in the baseline
directory for that distribution e.g.:

1. /var/opt/invary-baselines/debian/12/x86_64.

Step 3: Install Invary Appraiser and Sensor

1. Extract the Invary-Appraiser on the machine you want to run the appraiser on. It
can be a physical or virtual machine.

2. Run the invary-install.sh script:
a. sudo ./invary-install.sh -d

3. Your Invary appraiser is now running and will output any appraisals to
/var/opt/invary-appraiser/appraisals

4. Extract the Invary-Sensor package and place the files on the same machine.
5. Run: sudo ./invary-install.sh -d

The Appraiser and Sensor are now running on the same machine with appraisal outputs being
written to /var/opt/invary-appraiser/appraisals.

To learn how to configure additional options, including streaming appraisal results via a
webhook, please see the full Invary On-Premise Guide or readmes contained with your Invary
package.

Step 4: Testing

©2024 Invary, Inc. All rights reserved. 2

Invary has two open source projects to help you test a true positive scenario for failed Runtime
Integrity.

1. Invary Test Probe: https://github.com/Invary-Runtime-Integrity/invary-test-probe
a. The Invary Test Probe is a very simple Linux kernel module which inserts a

symbol into the kernel symbol table for discovery by the Invary sensor software. It
does not modify the running system in any other way.

2. Invary Test Kit: https://github.com/Invary-Runtime-Integrity/invary-test-kit
a. The Invary Test Kit is a Linux kernel module which hijacks the kill system call,

resulting in an error detected by the Invary sensor software. It does not modify
the running system in any other way, and only logs to syslog that kill has been
called before passing control back to the normal system call.

Once you have installed either kernel module the next appraisal will result in a failure. It is not
recommended to leave either kernel module installed once you are done testing.

If you are interested in more comprehensive true positive testing please contact the Invary team
at support@invary.com

Appendix A: Appraisal Output Guide

By default each endpoint is appraised once every 15 minutes (configurable). The resulting
appraisal has the following JSON payload:

Appraisal
The top level appraisal object:

Field Description Type Example

id Unique id of the appraisal id nkcxes7cwnd7dsyfwdhqc96ab

created Date and time when the
appraisal was performed

date time 2023-10-20T15:19:02.850349Z

status Overall status of the appraisal One of:
UNKNOWN,
SUCCESSFUL,
FAILED,
ERRORED

SUCCESSFUL

endpoint Unique id of the endpoint / host id w6rq1heetdznah7btt7n5srw2

passed List of checks passed List of check [

©2024 Invary, Inc. All rights reserved. 3

https://github.com/Invary-Runtime-Integrity/invary-test-probe
https://github.com/Invary-Runtime-Integrity/invary-test-kit
mailto:support@invary.com

name "required.nodes",
"function.pointers",
"task.gates",
"task.tree",
"data.nodes",
"nops.table"

]

failed List of checks that failed.
When the status is FAILED,
this field highlights which
check(s) failed.

List of check
name string

[
"jump.tables"

]

measurement Information about the
measurement that the
appraisal was based upon

Measurement See below

kernel Details about the endpoint’s
kernel

Kernel See below

node Details about the endpoint Node See below

distribution Details about the endpoint’s
operating system

Distribution See below

checks Details about the checks run as
part of the appraisal

list of Check See below

Measurement
The measurement details object

Field Description Type Example

nodes Number of nodes in the
measurement graph

number 110847

edges Number of edges in the
measurement graph

number 378929

modules Number of kernel modules
measured

number 80

Kernel
The appraisal/kernel details object:

Field Description Type Example

©2024 Invary, Inc. All rights reserved. 4

name Name of the operating system
kernel

string Linux

release Kernel release string string 5.10.0-25-amd64

version Kernel release version string #1 SMP Debian 5.10.191-1
(2023-08-16)

Node
The appraisal/node endpoint details object

Field Description Type Example

processor Processor architecture string string x86_64

name Hostname string host1

uptime Uptime (time since last boot)
in seconds

number 538

tags Metadata tags assigned to this
host via the sensor config file

List of string ["asset_32703", "lab"]

Distribution
The appraisal/distribution operating system details object

Field Description Type Example

vendor OS vendor string debian

release OS release string 11

codename OS release codename string bullseye

Check
The appraisal/check details object

Field Description Type Example

name The name of the appraisal
check

string required.nodes

result Outcome of the check One of: FAILED

©2024 Invary, Inc. All rights reserved. 5

UNKNOWN,
SUCCESSFUL,
FAILED,
ERRORED

failureDetails Details of the check (when
result is FAILED)

FailureDetails See below

FailureDetails
The appraisal/check/failure details object

Field Description Type Example

atNode Location of the failure in the
measurement graph in the
form of:

symbol_name
or
<module_name>
memory_address
@symbol_name

string <invary-core-kernel-module:text>
@ffffffffae2002e0:sys_call_table

reason A human-readable
explanation for the failure

string Matching sys_call_table entry
could not be found in baseline

value Values associated with the
failure

List of
string

Missing kernel__x64_sys_read,
found rogue:840 instead.

Successful Appraisal Example

When an endpoint’s operating system has integrity, the appraisal will be successful:

©2024 Invary, Inc. All rights reserved. 6

{
"id":"paaht7ec1scrd0g49p3w4fxkf",
"created":"2024-01-26T21:58:03.180105108+00:00",
"status":"SUCCESS",
"distribution":{
"codename":"bullseye",
"release":"11",
"vendor":"debian"

©2024 Invary, Inc. All rights reserved. 7

},
"endpoint":"s24fc74bk397cr3p7x605vn2f",
"kernel":{
"name":"Linux",
"release":"5.10.0-26-amd64",
"version":"#1 SMP Debian 5.10.197-1 (2023-09-29)"

},
"measurement":{
"edges":"53508",
"modules":"76",
"nodes":"10997"

},
"node":{
"name":"host1",
"processor":"x86_64",
"uptime":"6567",
"tags":["tag1","tag2"],

},
"passed":["required.nodes", "task.tree", "task.gates",

"jump.tables", "data.nodes", "nops.table",
"function.pointers"],

"failed":[],
"checks":[
{"name":"required.nodes", "result":"SUCCESSFUL"},
{"name":"task.tree", "result":"SUCCESSFUL"},
{"name":"task.gates", "result":"SUCCESSFUL"},
{"name":"jump.tables", "result":"SUCCESSFUL"},
{"name":"data.nodes", "result":"SUCCESSFUL"},
{"name":"nops.table", "result":"SUCCESSFUL"},
{"name":"function.pointers", "result":"SUCCESSFUL"},

]
}

Failed Appraisal Example

This example of a Failed Appraisal was created by using the Invary Test Kit, with pertinent
content in bold:

©2024 Invary, Inc. All rights reserved. 8

{
"id":"paaht7ec1scrd0g49p3w4fxkf",
"created":"2024-01-26T21:58:03.180105108+00:00",
"status":"FAILED",
"distribution":{
"codename":"bullseye",
"release":"11",
"vendor":"debian"

},
"endpoint":"s24fc74bk397cr3p7x605vn2f",
"kernel":{
"name":"Linux",
"release":"5.10.0-26-amd64",
"version":"#1 SMP Debian 5.10.197-1 (2023-09-29)"

},
"measurement":{
"edges":"53508",
"modules":"76",
"nodes":"10997"

},
"node":{
"name":"host1",
"processor":"x86_64",
"uptime":"6567",
"tags":["tag1","tag2"],

},
"passed":["required.nodes", "task.tree", "task.gates",

"data.nodes", "nops.table", "function.pointers"],
"failed":["jump.tables"],
"checks":[

This failed result contains a few key pieces of information:

● It shows what segment of the kernel has been impacted, in this case the System Call
section of the Jump Tables category. Other categories include: Required Nodes, Task
Tree, Task Gates, Data Nodes, Nops Table, and Function Pointers.

● It shows it was unable to find the expected kill system call and instead found invary_kill
in its place; showing a substantive change in definition.

● It is showing the memory address of the expected kill system call along with the memory
location of the invary_kill call that replaced it; showing a substantive change in expected
memory location.

Appraisal results also contain helpful information, like any tags you may have supplied this
particular machine to help identify it and what OS and Kernel it is running.

©2024 Invary, Inc. All rights reserved. 9

{"name":"required.nodes", "result":"SUCCESSFUL"},
{"name":"task.tree", "result":"SUCCESSFUL"},
{"name":"task.gates", "result":"SUCCESSFUL"},
{"name":"data.nodes", "result":"SUCCESSFUL"},
{"name":"nops.table", "result":"SUCCESSFUL"},
{"name":"function.pointers", "result":"SUCCESSFUL"},
{"name":"jump.tables", "result":"FAILED"
"failureDetails":[{

"atNode":
"<invary-core-kernel-module:text>
@ffffffffae2002e0:sys_call_table",

"reason":
"Matching sys_call_table could not be found in baseline",

"value":[
"Missing <invary-core-kernel-module:text>
@ffffffffa90a4230:__x64_sys_kill,
Found <invary_test_kit:text>
@ffffffffc0a5b346:invary_kill instead"

]
}]

}
]

}

Integration

Appraisal events are JSON formatted for easy ingestion into your SIEM, CNAPP, XDR, or log
aggregation system.

The quick start install outputs appraisals to disk in json format, while also persisting them in
syslog. You can also configure a webhook to stream these events from the Invary Appraiser to
your system. Invary has an example Opensearch install with predefined queries that
showcases such ingestion via a webhook which is available upon request.

©2024 Invary, Inc. All rights reserved. 10

